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Recovery of the time-evolution equation of time-delay systems from time series
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We present a method for time series analysis of both scalar and nonscalar time-delay systems. If the
dynamics of the system investigated is governed by a time-delay-induced instability, the method allows one to
determine the delay time. In a second step, the time-delay differential equation can be recovered from the time
series. The method is a generalization of our recently proposed method suitable for time series analysis of
scalar time-delay systems. The dynamics is not required to be settled on its attractor, and this also makes
transient motion accessible to the analysis. If the motion actually takes place on a chaotic attractor, the
applicability of the method does not depend on the dimensionality of the chaotic attractor—one main advan-
tage over all time series analysis methods known until now. For a demonstration, we analyze time series, which
are obtained with the help of the numerical integration of a two-dimensional time-delay differential equation.
After having determined the delay time, we recover the nonscalar time-delay differential equation from the
time series, in agreement with the “original” time-delay equation. Finally, possible applications of our analy-
sis method in such different fields as medicine, hydrodynamics, laser physics, and chemistry are discussed.
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[. INTRODUCTION does not require the motion to be settled on its attractor. The
method turned out to be practically insensitive against addi-

Time-delay differential equations have been widely pro-tional noise, hence providing a well-suited tool for the analy-

hyperchaotic motion of dynamical systems. Most of the atapplied the method to time series taken from an electronic

tention has been devoted to scalar time-delayed modefScillator [17] and a computer experimefit9]. Although
[1-9]. Since the pioneering work of Farmig], it has been some of the time-delay models investigated are indeed scalar

well established that scalar time-delay differential equation%:et?ﬁteir_zee'lgela(%fseﬁtnet?;f :rﬁ'a it?oggnr?;\% Ece)re]?lcalr?)r.ol\;zgsicna_
are able to exhibit high-dimensional chaotic attractors with h diff yf. Id d f led i F(J%FJZ

many positive Lyapunov exponents and, therefore, ar uc |her(_ent e sasharrgy{so couple ﬁsg' aal[ ' Z
prominent examples to illustrate the chaotic hierarfhg. 22(]”;:] dy;C(aS[n?iit_rgO]ptoy:cocg%t[?gr_tﬁg’ob);err(\)/e)(;nL?r?;ltgsble
Sinc_e then, scalar time-delay equations, especially the Wel%md,chaotic dynamical behavior. Additionally, several mod-
studied Mackey;jGIasshsyrs]tz[_m], have bleerrw] used as model /) " i multiple delay times have been invesfigi@ﬁ—Bﬂ
systems to produce high-dimensional chaotic time serie X = . .
[11]. In the case of small delay times, the resulting low- nngluz igarazrt'h\(l)vde prrgs(e)gég %eré(eerg?a';%n Ia];:zsvittlr:newzenes
dimensional chaotic dynamics is accessible to time serie@aly prop o '

analysis with the help of well-established meth¢tig—14. are able to identify nonscalar time-delay systems and, there-

For example, the fractal dimension and the Lyapunov expo_f-ore’ to verify the existence of an underlying time-delay-

nents of the chaotic attractors can be estimated. In the case Bduced instability. The method allows the recovery of the

large delay times, where the dynamics is high—dimensionarll_onscalar time-delay differential equation from the time se-

chaotic, these methods run into severe problghss ries. This paper is or_ganlzed as follows. In Sec. Il, the basic

A first step toward the time series analysis of time-dela . ! ;
systems was performed by Fowler and Kemft8], who adequate measures to determine the delay time from the time
X éeries are discussed. In Sec. Il we illustrate the method by

showed how “smart embeddings” can indicate the presenc > . . ;

of an underlying scalar time-delay system for any delay timefap'[’ly'_ng It to a two-dimensional t|me-d_elay system, the tra-
Later, we introduced a time series analysis method in orddfctories of whlch_are compu_ted numerlca_lly. We show.that,
to verify the existence of an underlying time-delay systemWhIIe the delay time can still be determ|_ned.even with a
[17—20. If the dynamics is governed by a scalar time-delayscalar ansatz, the existence of an underlying time-delay sys-

differential equation, we show that the delay time and thjqem cannot be verified. The latter is accomplished with the

time-delay differential equation can uniquely be recovere elp of a no_nscalar ansatz, _Wh'Ch adqunally a!lows us to
from the time series. The method does not put any restrictiof€cCVE the tu_ne-glelay equation from the time series. _Flnally,
ossible applications to experimental systems are discussed

on the dimensionality of the dynamics analyzed, opening U|5’ Sec. IV
a door toward a time series analysis of high-dimensional cha' €¢- V-
otic motion in time-delay systems. Furthermore, the method Il THE BASIC IDEA OF THE ANALYSIS
We consider anN-dimensional time-delay differential

*Author to whom correspondence should be addressed. equation
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pect that an increasing number of time series with increasing
(1) complexity of the dynamics is required. We argued in Sec. |
. . that this is not true for time-delay systems, but the observa-
yTO(t) =Yo(t—10), tion of N time series is sufficient to construct the trajectory in
the infinite-dimensional phase space of Brdimensional
time-delay system, no matter which dynamical state is real-
_ - ized. Second, it is the specific property of time-delay systems
Yo(O)=Yi(D), To=t=0. @ that only a restricted npumberpof IC::oo):dinates are )éor):elated
The time evolution ofj, at timet does not depend only on Via the time-evolution equatiofL), namely, the & coordi-
its present statgo(t), but also on a state in the pagt, (1), ~ Nates(Vo(t).¥,(1)) taken from the phase space and one of

which introduces nonlocal correlations in time. The state Ofits time derivativesyy(t). Therefore, it is not necessary to

the system is uniquely defined by functions on an .inteeraI analyze the dynamics in the infinite-dimensional phase
of length7,. Therefore, the phase space of systéiisC; ,  space, to verify the existence of an underlying time-delay
whereC, is the space of continuous functions on the intervalsystem. It is sufficient to show the existence of a functional

[— 70,0] and the phase space has to be considered as beiff lationship(1). To this end, we analyze the dynamics in a
infinite dimensional. 3N-dimensional space, which is spanned by the coordinates

The trﬁjectory in the infinite-dimensional phase space(yo,yfo,yo)_ The dynamics of a time-delay system in the
N7,t) e C; can be recovered from its projectigip(t) with-  3N-dimensional space is restricted to h-glimensional hy-

Yo(t)=(Fo(t) Y (1),

with the initial condition

out loss of information, persurface, which is given by the time-evolution equation
R (1). The hypersurfacgl) is defined that to any value
N7 t)=Yo(t—17), —71o<7<0. B (Jo(t).¥,,(1)) there is a unique value of the time derivative

We emphasize that constructi@) of the trajectory in phase y(t) for all timest.

space is exact, and can be accomplished for all values of the The idea of the time series analysis method presented in
control parameters of the time-delay equation. Théime  this paper is to test the existence of such a hypersurface for a
seriesyy(t) encompasses the complete information about thegjiven time series. Starting witN scalar time series, which
dynamics of the system in the infinite-dimensional phasehave been taken from the system to be investigated, we hy-
spacecﬁ‘o, no matter which dynamical state is realized by thepothesize, at first, that the dynamics is governed by an
time-delay system. Equatiaf8) holds for transient motions N-dimensional time-delay system

as well as for motions on chaotic attractors of arbitrary di-

mension. In general, it is expected that the dynamics of an ;O(t):ﬁr(yo(t),yr(t)),
infinite-dimensional system cannot be reconstructed from a ®
finite number of time series. For instance, to construct the y.()=Yo(t—7),

trajectory in the phase space of spatial systems, the dynamics

of which is governed by nonlinear partial differential equa-yyith an unknown functior, and an unknown delay time

tions, an increasing number of time series with increasingsth of which will be determined in the subsequent analysis,

complexity of the dynamics is required. if ansatz(5) turns out to be successful. Then we take the
Additionally, the time derivative)(,t) eCE‘O of the tra- :

. . i ) . values of ,,y,) andy, from the time series, and analyze its
jectory in phase space can be estimated, in principle, as

dynamics in the BI-dimensional space, which is spanned by
3';( r,t)=&70(t— 7, —1o=<7<0, 4) the coordinatesy(-o,ywyo). If the coordinates of the trajec-

. . o ) o tory (Yo(t),¥.(t),Yo(t)) are functionally correlated via Eq.
though, in practice, the estimation of time derivatives can bgs)  the hypothesis that the system is governed by a time-

the source of severe errors. _ _ ~ delay equation with the delay timehas been verified. If the
In the case of ordinary as well as time-delay differential :

equations, the time derivative of the trajectory in phase spac@roiected trajectory¥(o,y,yo) does not fulfill condition(s),

is functionally related to the trajectory in phase space via théh€ hypothesis has to be rejected. This is a unique criterion to
time-evolution equation. It is the specific property of time- determine the delay time from the time series. Additionally,
delay systems, though, that only a restricted number of colh® time-delay differential equation can be constructed by
ordinates are correlated via the time-evolution equatbp ~ analyzing the functional relationship), which exactly gives
namely, the N coordinates(yy(t),¥, (1)) taken from the the functionfi,. Obviously, the only requirement remains

. . . . that the system dynamics fulfills the time-evolution equation
'Frajectory A1) in phase space, with thél coordinates (5), which even is true for all kinds of transient motion as

yo(t) taken from the time derivativ@(,t) of the trajectory. well as for the motion on chaotic or hyperchaotic attractors

The basic idea of the time series analysis method preef arbitrary dimension. Therefore, the method permits us to
sented is to test whether the time-delay equafibncan be  analyze high-dimensional chaotic dynamics of time-retarded
constructed, the solution of which is given by the observedsystems, which is not accessible to the fractal dimension
time series. In order to accomplish this task, in general, onanalysis. If the system possesses several coexisting attractors
has to construct a phase space with the help of the observéd], the method is applicable to the dynamics on every at-
time series. In infinite-dimensional systems, one would exiractor.
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We have argued above that the existence of an underlyindimension analysis has some severe drawbacks: First, a frac-
time-delay system can be verified by proving the existence ofal analysis requires a large number of data points, because
a 2N-dimensional hypersurfacdi, in form (5) in the for the determination of a fractal dimension it is crucial to
3N-dimensional space, which is spanned by the coordinatesolve the geometrical object under investigation on differ-

I heref . i | ent “length scales.” Second, the fractal analysis is compu-
(Yo.¥-.Yo). Therefore, it is crucial to apply adequate mea-iaiignally intensive and, in practice, sensitive to additional

sures, which enable us to identify such a hypersurface bygise  All those measures rely on the fact that the trajectory
analyzing the time series. All measures proposed splf&* s restricted to a hypersurface, if the projected trajectory is
19] rely solely on the fact that, if the trajectory correlated via Eq(5). It has been argued above that the

(Yo(1),¥.(1),Yo(t)) is correlated via Eq(5), the dimension- dimension reduction is not a sufficient criterion for the veri-
ality of the trajectory is reduced. To our knowledge, this wasfication of an underlying time-delay system. The existence of
realized for the first time by Fowler and Kembd6], who the functional relationshigb) has to be shown separately.

analyzed the dynamics of the Mackey-Glass equation. They
app“ed an embedding Of the “me Series in a three“l. TIME SERIES ANALYSIS OF A TWO-DIMENSIONAL

dimensional space with two time-delayed coordinates. The TIME-DELAY SYSTEM—A NUMERICAL EXAMPLE

delay time of the first coordinate has been chosen t0 be g ohpjicability of the method for time series analysis is

small. The delay time of the second coordinate was taken &emonstrated with the help of a computer experiment. A

variable. The authors_ of Ref16] stated that if the delay tim_e nonscalar time-delay system is integrated numerically. De-

) o ., Sails of the numerical integration are reported in the Appen-
delay system, the trajectory lies “close to a surface”. Fowlerg;, ‘\ye will show that, although a scalar ansatz also leads to
2nd Kemperda}ppl|eq a sl_lnglfol\ar value fractllon to dgtecgtg% local minimum in the filling factor, the scalar ansatz must
ecrease in dimensiona ity. S was correctly menque Ye rejected, because it is not possible to find a surface, which
them, th_e singular value fraction is not a good tool if theis given by an equation of forr(s) with the help of a scalar
surface is folded. The latter must be considered as the gefcat; 1n a second step, we will identify the system as a
erallqcase.l 17-2 d . . vsi nonscalar time-delay system by verifying the existence of
r?cden; y.[ N q we pdrolpose a time S(IarlesThana YSISsuch a surface with the help of a nonscalar ansatz. Finally,
method for scalar time-delay systems only. There, W&pq (ime-delay differential equation will be recovered from
showed that the trajectory |ry6,y70,y0) space is restricted 1 time series.
to a two-dimensional surface. The reduction in dimension We consider the two-dimensional time-delay differential
was detected by intersecting the projected trajectory with @quation, which has been chosen to serve its demonstrational
surfacek(Yo,Y,,Yo) =0. The intersection points must be on purpose best:
a curve, if the projected trajectory is correlated via E).

We detected such a behavior by ordering the intersection u=—v+f(uTO),
points with respect to one coordinate and drawing a polygon (6)
line, which connects all intersection points. The length of the v=g(u,v),

polygon line has been taken as a measure for the alignment
of the intersection points. This simple method correctly de-with the initial conditions
termined the delay time of scalar time-delay systems, but

there is no straightforward generalization for nonscalar time- u(t)=u;(t), —7ost<0,
delay systems.
For this reason, we apply another method, the basic idea v(t=0)=v;.

of which is the following: If the trajectory of an } ]
) ) ) ) . L The functionsf andg are given by
N-dimensional time-delay system in thyo(yTO,yo) space,

where 7y is assumed to be the correct value of the delay au,,
time, is correlated via Eq5), the trajectory is restricted to a f(u, )= T3 (7)
’ .

hypersurface. Therefore, most parts of tﬁ@,yro,ﬁo) space

are not visited by the trajectory. If the trajectory is viewed in 1

any other space, for instance, if the value of the delay time is g(up)=—F(v—u). (8

not chosen properly, the projected trajectory is expected to

visit “more” parts of the space. Therefore, we compute theEquation(6) has some similarity to the Mackey-Glass sys-
filling factor of the projected trajectory by covering the tem. The dependence afon the time-delayed value, is

(Yo.Y..Yo) space withP3N equally sized hypercubes. The the same as it is the case in the Mackey-Glass system. But
filling factor is the number of hypercubes, which are visitedwhile the dependence af on u induces exponential relax-
by the projected trajectory, normalized to the total number ofations in the Mackey-Glass system, in E@). it is similar to
hypercubesP3N. The filling factor is computed under varia- a damped oscillator. There are two limits of the control pa-
tion of 7. The existence of an underlying time-delay-inducedrameter space&(T, 7o), where the dynamics of Ed6) is
instability induces a local minimum in the filling factor. well known. Fora— 0, system(6) reduces to a damped har-
Fowler and Kembef16] already suggested a fractal di- monic oscillator. ForT—0, the time scale ob is much
mension analysis of the projected trajectories. The fractalaster compared to the time scalewfThe variablev, then,
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Filling Factor

FIG. 2. (a) Filling factor of the time seriesi(t) of system(6)
with a=3.00, 7o=20.00 for different values ofl (lower curve:
T=0.10; middle curve: 0.60; upper curve: 1)9We used 100 000
data points for the filling factor analysis, which were taken out of a
time series of 1 000 000 data points. (ly), a blowup of the filling

4} . ) X ) . . factor in the vicinity of the delay timer= 7, is shown(squares:
240 260 280 T=0.10; circles:;T=0.60; starsT=1.90.
t reaches a maximal value. Fer 7o=20.00, a local mini-

mum of the filling factor is observed for all valuesdf This
FIG. 1. Time series of syster(6) obtained with the help of decrease in the filling factor is due to the nonlocal correla-
numerical integratiorfa=3.00, 7,=20.00 for different values of tions in time induced by the time delay. An additional local
T: (@ T=0.10, (b) T=0.60, and(c) T=1.90. minimum appears at=27,. For high enough values df,
though, other regularly spaced local minima in the filling
adiabatically follows variable, and the dynamics of Eg6) factor appear, the period of which is equal to the oscillations
resembles that of the Mackey-Glass system. Heand r, ~ Of the underlying damped oscillator. In Figta?, a blowup
are chosen such that in the scalar limit¢0) the dynamics Of the ~-dependent filling factor in the vicinity of the delay
is high-dimensional chaoti@=3, o= 20). T is varied from  time 70=20.00 is shown. Clearly, the local minimum ap-
0.10 to 1.90. Note that systef) can be transformed to a pears for all values of considered here, but it is less pro-
scalar integrodifferential equation for the variabldy inte-  nounced for increasing, because the character of the time-

grating the second equation with the help of the method oflelay system then becomes more and more nonscalar. As
varying coefficients. emphasized above, the reduction in dimension is a necessary,

We present three time serieswfndv for differentT in but not a sufficient condition for the verification of a scalar
Fig. 1. In Fig. 1a), it is clearly seen how the variable for ~ time-delay system. The existence of a surface in f®hrhas
T=0.10, follows the variabler and the dynamics ofi re-  to be checked as well.
sembles that of a Mackey-Glass system. The values f)( To this end, we apply an intersection of the time series
are positive for all times. We mention at this point that sys- U(t) with the planeu(t')=0. The values of the coordinates
tem (6) is invariant under the transformation u'=u(t') and u} ,= U (t) are recorded. They have to be
(u,v)—(—u,—v). Therefore, there exists another attractorcorrelated accordmg to the scalar ans@iz
with negative values of,v). In Figs. Xb) and Xc), we
observe that the two coexisting attractors are merged. Vari- h,(u‘,uiT )=0. (10)
ablev no longer follows variablel, but it develops an inde-

endent dynamics. In these cases, the system reveals its nap- . o . .
gcalar natzre y Qﬂwerefore the pointsu,u’. ) have to lie on a curve, if the

Now, we analyze these time series with the help of adynamics is governed by a scalar time-delay equation. The
filling factor analysis. At first, we choose the scalar ansatz intersection points ', u’ ) for 7=7,=20.00 and different
_ values of T are shown in Fig. 3. For small values of the
u=h,(u,u,) (9 time seriex (t) follows the time series(t). In this case, the
dynamics of variableu is close to the dynamics of the
for the analysis of the time seriagt) with an unknown Mackey-Glass system. Such a behavior can be seen in Fig.
delay timer and an unknown functioh,. We analyze the 3(a), where the intersection yields a geometrical object,
time series in a three-dimensional space, which is spanneshich is close to being a one-dimensional curve. The inset of
by the coordinatesi(,u,,u) with a variable value of. Then,  Fig. 3(@ shows a blowup of the intersection points. Clearly,
the filling factor of the time series is determined under variathe alignment of the intersection points is not perfect, as a
tion of 7. result of the nonscalar nature of systéh Nevertheless, the
The results of the filling factor analysis are presented inscalar ansatz9) would be a good approximation for small
Fig. 2 for different values of. The filling factor is minimal values of T. For higher values of, system(6) reveals its
for small values ofr as a result of local correlations in time. nonscalar nature. Therefore, in FiggbBand 3c), the dis-
The filling factor increases for increasing which is a fin-  tribution of the intersection points becomes cloudy. That
gerprint of the chaotic nature of the motion, and eventuallymeans, a smooth functional relationslig cannot be found
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10.06

~0.04

(b) — 0.02

Filling Factor

FIG. 4. (a) Filling factor of the two time seriegu(t),v(t)) of
system(6) with a=3.00, and7;,=20.00 for different values of
T(T=0.10, 0.60, and 1.90; the values ©f are indicated in the
figure). We used 100 000 data points for the filling factor analysis,
which were taken out of a time series of 1 000 000 data points. In
(b) a blowup of the filling factor in the vicinity of the delay time
=19 IS shown (squares: T=0.10; circles: T=0.60; stars:
T=1.90.

The delay timer and the functiond, and g, are still un-
known, and will be determined in the following. First, we
perform a filling factor analysis in the same spirit as has been
done in the scalar case. But now the two time series
(u(t),v(t)) have to be projected to a six-dimensional space
i which is spanned by the coordinatas ,,u,v,v,,v). The
six-dimensional space is covered with equally sized hyper-
cubes and the number of hypercubes which have been visited
. . _ . by the trajectory is counted under variation of
FIG. 3. Intersection points of the time serieft) for a=3.00, The results are presented in Fig. 4 for different values of
and 7= 20.00 and different values df: (a) T=0.10, (b) T=0.60, T, namely, T=0.10, 0.60, and 1.90. The minimum in the
and(c) T=1.90. The analysis has been conducted with a time serieﬁl'"ng factor for 7— 710: 20.00 is well detected for all values
of 1000 000 data points. of T. In Fig. 4b), we show a blowup of the-dependent
. . filling factor in the vicinity of the delay timery of system
in these cases and the scalar ansatz has to be rejected. N%)-' Clearly, the local minimum for= 7, is detected for all
ertheless, in the considered example of a two-dimensiong), es ofT.’
time-delay system the filling factor analysis was successful - ag argued above, the existence of the functional relation-
in the framework of a scalar ansatz, in the sense that thgnip (5) has to be shown, in order to verify the underlying
rdependent filling factor showed local minima for the cor- time-delay-induced instability. The special form of the an-
rect values of the delay time. satz[Egs. (13) and (14)] together with the time-evolution
Now, we will analyze the time series for higher values of equations(6) allows for a convenient way of proving the
T with the help of a nonscalar ansatz. The general twoexistence of function5). We emphasize, though, that, in

dimensional ansatz is general, it is expected to be more troublesome. We apply an
intersection with the help of the conditian(t')=0. If the
u=h, ,(u,u.,0,0.), (12) nonscalar ansatz, Eq4.3) and(14), is successful, the values

U'=0(t") andul, =u, (') have to be correlated via

U:hryz(U,UT,U,UT), (12) ui:fr(uifo)' (15)
with an unknown delay time- and two unknown functions
h, 1, andh,,. The analysis has to be conducted in a six- ) i .
dimensional space, in which the dynamics is restricted to &f the smooth functiori, is verified. We compare the recon-
four-dimensional hypersurface. The hypersurface is given bytructed functiorf, (open circleg with the functionf (line)
the functionsh, ;, andh, ,, which can be determined with Of the time-delay differential equatiof§). The coincidence
the help of adequate fitting procedures, for instance, a leasts 90od and the ',u’ ) plot can be used to recover the
squares-fit in the framework of a presupposed model. In thigunction f from the time series. We emphasize that no pa-
paper, we chose a more restrictive ansatz for demonstrationeameter has been adjusted to compare the fundtioith its
purposes, recoveryf, in Fig. 5a). _
In the next step, the functional relationship betweén
U=—v+f,(u,) (13) andu' is investigated. We use the same intersection condi-
i tion v(t')=0 as above. According to the nonscalar ansatz,
Egs.(13) and(14), the coordinates of the intersection points
v=—0g,(u,v). (14  are correlated via

Plotting U’ versusuiTO, as is shown in Fig. ®), the existence
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hand, we propose to check the validity of the Mackey-Glass
system by analyzing suitable time series.The analysis might
improve the understanding of the experiments, and possibly
allows us to determine important system parameters and
serve as a new diagnostic tool.
In a recent paper, Villermauk9] dealt with the low-
frequency oscillations of the velocity field in the “hard tur-
. bulence” regime in a closed convection box. The author pro-
2 0 2 posed a two-dimensional time-delay system to describe the
0l i dynamics of the disturbances. Our method has the potential
Kt to test the validity of the model by analyzing the experimen-
tal time series, which possibly can lead to a better under-
FIG. 5. Recovery of the time-delay differential equation from standing of boundary instabilities.
the time series(a) Comparison of the data pointsi'(u; ), which Another important class of a prototype model for chaotic
are shown as open circles, with the functibriline). For clarity,  dynamics are laser systems. No wonder that time-delay mod-
only 300 data pointsLC',u'TO) are shown(b) Comparison of the data els have also been investigated in laser physics
points @',u'), which are shown as open circles, with the function ([3,23,24,31,3Band references therginit is the advantage
g(u',0) (line). For clarity, only 40 data pointsy{,u') are shown.  of laser systems with a time delay that they allow precise
measurements of time serig25,32. We find them particu-
v'=—g,(u’0). (16) larly suitable for our analysis, because we expect the time
delay of laser systems to be practically discrete, compared to
Plotting o' versusu' yields the functiong, (u',0). We com- qt_her_experimental_ systems. The fir_st steps t_oward the_ iden-
pare the functiong(u',0) andg,(u',0) in Fig. 5b). Again, tification of high-dimensional chaotic dynamics of a time-
the correspondence is good and thé ') plot can be used delayed laser system have been takzol.
to recover the functiorg,(u',0) from the time series. The
recovery of the functiorg,(0p') is to be done in the same V. CONCLUDING REMARKS
spirit, and is not shown here. Obviously, the existence of the
functionsf, andg, has been proven and a two-dimensional In conclusion, we have presented a generalization of a
time-delay system has been identified by analyzing the timeecently proposed method for recovering the time-evolution
series. equation of scalar time-delay systems by analyzing the time
series. The method is generalized in the way that it can be
applied to nonscalar time-delay systems.

We have shown that ad-dimensional time-delay system
Finally, we would like to discuss possible applications of can be identified with the help & time series. The analysis
the present method for time series analysis. We emphasizgeed not be conducted in the infinite-dimensional phase
that our method does not have the restrictions which arspace, instead it is sufficient to analyze the dynamics in a
inevitable in the embedding techniques necessary for the d&N-dimensional space, in which the dynamics has to be re-

termination of fractal dimensions of chaotic attractors instricted to a N-dimensional hypersurface. This finding gives
phase space. The analysis is not restricted to a lowds a unique criterion to determine the delay time of a non-
dimensional chaotic motion. Transients can be analyzed ascalar time-delay system by analyzing the time series. Addi-
well. The method is not sensitive to additional noise. Fur-tionally, the time-delay differential equation of dimensidn
thermore, it has been shown that the analysis can be petan be recovered.
formed with a comparably small number of data po[r28]. We emphasize that we only require the motion to obey the
Apparently, we have a well-suited tool for the analysis oftime-delay differential equation. The motion is not required
experimental time series. If the dynamics of the system to bé& be located in certain parts of the phase space. If the dy-
investigated is governed by a time-delay-induced instabilitynamical system possesses coexisting attractors, the method
the method allows for the determination of the delay timecan be applied to motions on every coexisting attractor.
and a recovery of the time-delay differential equation. ThereMoreover, the method is also applicable to transient motions.
fore, it is possible to compare time series of experimentalf the motion is on a chaotic or hyperchaotic attractor, the
systems with proposed model equations in detail. Systerapplicability of the analysis method depends neither on the
parameters can be extracted from the time series analysidimensionality nor on the number of positive Lyapunov ex-
which might be not accessible otherwise. ponents of the chaotic or hyperchaotic attractor. Therefore,
We speculate that the analysis can be particularly usefulve find that the present method might open up a door toward
in such fields as medicine and biology, where noninvasive time series analysis of high-dimensional chaotic motion in
technigues are of great importance for obvious reasons. ltime-delay systems.
several experiments on human subjects, which were exposed We have shown the applicability of the method by ana-
to time delays of some sort, a qualitative change of the oblyzing time series which have been obtained with the help of
served dynamics has been verif[dg6,9,26,34, which could  numerically integrating a two-dimensional time-delay differ-
be correlated to well-established pathologies. If the observedntial equation. The system investigated mimics a scalar
dynamics is, indeed, induced by a time delay, as proposedime-delay system in a certain parameter range, where a sca-
we expect our analysis method to be successful. On the othéar ansatz yields a good approximation. Under variation of a

d/dt
AIP/P
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single control parameter, the dynamics increasingly reveals APPENDIX: NUMERICAL METHODS

the nonscalar nature of the time-evolution equation. In this  The results presented in this paper were computed with
case, a scalar ansatz is not sufficient, but, nevertheless, wee help of a Runge-Kutta algorithm of the fourth order. The
have successfully analyzed the time series with the help of fundamental time step was taken to be 0.01. The length of
nonscalar ansatz. The delay time has been determined frothe memory was 2,000 time steps. In all simulations pre-
the time series. Finally, we recovered the two-dimensionafented, we chose homogeneous initial values(¢f=0.50,
time-delay differential equation by analyzing the time series? (1) =0.90, and— 7o <t=<0.

. o . . We checked the validity of the numerical integration of
POSS'ble qppllcathns for the an_al_y sis of dynamma] SyStemgystem(ﬁ) by comparing t)r/1e results of Runge—KStta algo-
in such different fields as medicine, hydrodynamics, lasetjinms of different orders, under variation of the time step of
physics, and chemistry are discussed.

the integration, in order to check the validity of the results.
Additionally, the computed time series were compared to
analytical solutions, which are available in certain parameter
ranges.

For the filling factor analysis, we used time series with
1 000 000 data points. The time derivatives were estimated
. . , by applying a local parabolic approximation. To compute the

We thankfu!!y acknowledge valuable discussions with J'T}:iegggde%t filling fgctor, everf/)rt)enth point of the tim% series
Peinke, O. E. Rssler, the ENGADYN group, and H. Kantz. \yas taken. Therefore, we conducted the filling factor analysis
Financial support of the Deutsche Forschungsgemeinschafly analyzing 100 000 data points in three- or six-dimensional
is acknowledged. space, respectively.
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