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Recovery of the time-evolution equation of time-delay systems from time series
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We present a method for time series analysis of both scalar and nonscalar time-delay systems. If the
dynamics of the system investigated is governed by a time-delay-induced instability, the method allows one to
determine the delay time. In a second step, the time-delay differential equation can be recovered from the time
series. The method is a generalization of our recently proposed method suitable for time series analysis of
scalar time-delay systems. The dynamics is not required to be settled on its attractor, and this also makes
transient motion accessible to the analysis. If the motion actually takes place on a chaotic attractor, the
applicability of the method does not depend on the dimensionality of the chaotic attractor—one main advan-
tage over all time series analysis methods known until now. For a demonstration, we analyze time series, which
are obtained with the help of the numerical integration of a two-dimensional time-delay differential equation.
After having determined the delay time, we recover the nonscalar time-delay differential equation from the
time series, in agreement with the ‘‘original’’ time-delay equation. Finally, possible applications of our analy-
sis method in such different fields as medicine, hydrodynamics, laser physics, and chemistry are discussed.
@S1063-651X~97!14110-1#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Time-delay differential equations have been widely p
posed to account for the observed oscillatory, chaotic,
hyperchaotic motion of dynamical systems. Most of the
tention has been devoted to scalar time-delayed mo
@1–9#. Since the pioneering work of Farmer@2#, it has been
well established that scalar time-delay differential equati
are able to exhibit high-dimensional chaotic attractors w
many positive Lyapunov exponents and, therefore,
prominent examples to illustrate the chaotic hierarchy@10#.
Since then, scalar time-delay equations, especially the w
studied Mackey-Glass system@1#, have been used as mod
systems to produce high-dimensional chaotic time se
@11#. In the case of small delay times, the resulting lo
dimensional chaotic dynamics is accessible to time se
analysis with the help of well-established methods@12–14#.
For example, the fractal dimension and the Lyapunov ex
nents of the chaotic attractors can be estimated. In the ca
large delay times, where the dynamics is high-dimensio
chaotic, these methods run into severe problems@15#.

A first step toward the time series analysis of time-de
systems was performed by Fowler and Kember@16#, who
showed how ‘‘smart embeddings’’ can indicate the prese
of an underlying scalar time-delay system for any delay tim
Later, we introduced a time series analysis method in or
to verify the existence of an underlying time-delay syst
@17–20#. If the dynamics is governed by a scalar time-de
differential equation, we show that the delay time and
time-delay differential equation can uniquely be recove
from the time series. The method does not put any restric
on the dimensionality of the dynamics analyzed, opening
a door toward a time series analysis of high-dimensional c
otic motion in time-delay systems. Furthermore, the meth
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does not require the motion to be settled on its attractor.
method turned out to be practically insensitive against ad
tional noise, hence providing a well-suited tool for the ana
sis of experimental time series. So far, we have success
applied the method to time series taken from an electro
oscillator @17# and a computer experiment@19#. Although
some of the time-delay models investigated are indeed sc
ones, time-delay systems are, in general, nonscalar. Non
lar time-delay differential equations have been proposed
such different fields as arrays of coupled oscillators@21,22#,
laser physics@23–25# physiology @26–28#, hydrodynamics
@29#, and chemistry@30# to account for the observed unstab
and chaotic dynamical behavior. Additionally, several mo
els with multiple delay times have been investigated@31–33#
In this paper, we present a generalization of the time se
analysis method proposed in Refs.@17–19#. Herewith, we
are able to identify nonscalar time-delay systems and, th
fore, to verify the existence of an underlying time-dela
induced instability. The method allows the recovery of t
nonscalar time-delay differential equation from the time
ries. This paper is organized as follows. In Sec. II, the ba
idea of the time series analysis method is presented. A
adequate measures to determine the delay time from the
series are discussed. In Sec. III we illustrate the method
applying it to a two-dimensional time-delay system, the t
jectories of which are computed numerically. We show th
while the delay time can still be determined even with
scalar ansatz, the existence of an underlying time-delay
tem cannot be verified. The latter is accomplished with
help of a nonscalar ansatz, which additionally allows us
recover the time-delay equation from the time series. Fina
possible applications to experimental systems are discu
in Sec. IV.

II. THE BASIC IDEA OF THE ANALYSIS

We consider anN-dimensional time-delay differentia
equation
5083 © 1997 The American Physical Society
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5084 56M. J. BÜNNER, TH. MEYER, A. KITTEL, AND J. PARISI
yẆ 0~ t !5hW „yW 0~ t !,yW t0
~ t !…,

~1!

yW t0
~ t !5yW 0~ t2t0!,

with the initial condition

yW 0~ t !5yW i~ t !, 2t0<t<0. ~2!

The time evolution ofyW 0 at time t does not depend only o
its present stateyW 0(t), but also on a state in the past,yW t0

(t),
which introduces nonlocal correlations in time. The state
the system is uniquely defined byN functions on an interva
of lengtht0 . Therefore, the phase space of system~1! is Ct0

N ,

whereCt0
is the space of continuous functions on the inter

@2t0 ,0# and the phase space has to be considered as b
infinite dimensional.

The trajectory in the infinite-dimensional phase spa
Y(t,t)PCt0

N can be recovered from its projectionyW 0(t) with-

out loss of information,

Y~t,t !5yW 0~ t2t!, 2t0<t<0. ~3!

We emphasize that construction~3! of the trajectory in phase
space is exact, and can be accomplished for all values o
control parameters of the time-delay equation. TheN time
seriesyW 0(t) encompasses the complete information about
dynamics of the system in the infinite-dimensional pha
spaceCt0

N , no matter which dynamical state is realized by t

time-delay system. Equation~3! holds for transient motions
as well as for motions on chaotic attractors of arbitrary
mension. In general, it is expected that the dynamics of
infinite-dimensional system cannot be reconstructed from
finite number of time series. For instance, to construct
trajectory in the phase space of spatial systems, the dyna
of which is governed by nonlinear partial differential equ
tions, an increasing number of time series with increas
complexity of the dynamics is required.

Additionally, the time derivativeẎ(t,t)PCt0

N of the tra-

jectory in phase space can be estimated, in principle, as

Ẏ~t,t !5yẆ 0~ t2t!, 2t0<t<0, ~4!

though, in practice, the estimation of time derivatives can
the source of severe errors.

In the case of ordinary as well as time-delay different
equations, the time derivative of the trajectory in phase sp
is functionally related to the trajectory in phase space via
time-evolution equation. It is the specific property of tim
delay systems, though, that only a restricted number of
ordinates are correlated via the time-evolution equation~1!,
namely, the 2N coordinates„yW 0(t),yW t0

(t)… taken from the

trajectory Y(t,t) in phase space, with theN coordinates

yẆ 0(t) taken from the time derivativeẎ(t,t) of the trajectory.
The basic idea of the time series analysis method p

sented is to test whether the time-delay equation~1! can be
constructed, the solution of which is given by the observ
time series. In order to accomplish this task, in general,
has to construct a phase space with the help of the obse
time series. In infinite-dimensional systems, one would
f
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pect that an increasing number of time series with increas
complexity of the dynamics is required. We argued in Se
that this is not true for time-delay systems, but the obser
tion of N time series is sufficient to construct the trajectory
the infinite-dimensional phase space of anN-dimensional
time-delay system, no matter which dynamical state is re
ized. Second, it is the specific property of time-delay syste
that only a restricted number of coordinates are correla
via the time-evolution equation~1!, namely, the 2N coordi-
nates„yW 0(t),yW t0

(t)… taken from the phase space and one

its time derivativesyẆ 0(t). Therefore, it is not necessary t
analyze the dynamics in the infinite-dimensional pha
space, to verify the existence of an underlying time-de
system. It is sufficient to show the existence of a functio
relationship~1!. To this end, we analyze the dynamics in
3N-dimensional space, which is spanned by the coordina

(yW 0 ,yW t0
,yẆ 0). The dynamics of a time-delay system in th

3N-dimensional space is restricted to a 2N-dimensional hy-
persurface, which is given by the time-evolution equati
~1!. The hypersurface~1! is defined that to any value
„yW 0(t),yW t0

(t)… there is a unique value of the time derivativ

yẆ 0(t) for all times t.
The idea of the time series analysis method presente

this paper is to test the existence of such a hypersurface
given time series. Starting withN scalar time series, which
have been taken from the system to be investigated, we
pothesize, at first, that the dynamics is governed by
N-dimensional time-delay system

yẆ 0~ t !5hW r„yW 0~ t !,yW t~ t !…,
~5!

yW t~ t !5yW 0~ t2t!,

with an unknown functionhW r and an unknown delay timet,
both of which will be determined in the subsequent analy
if ansatz ~5! turns out to be successful. Then we take t

values of (yW 0 ,yW t) andyẆ 0 from the time series, and analyze i
dynamics in the 3N-dimensional space, which is spanned

the coordinates (yW 0 ,yW t ,yẆ 0). If the coordinates of the trajec

tory „yW 0(t),yW t(t),yẆ 0(t)… are functionally correlated via Eq
~5!, the hypothesis that the system is governed by a tim
delay equation with the delay timet has been verified. If the

projected trajectory (yW 0 ,yW t ,yẆ 0) does not fulfill condition~5!,
the hypothesis has to be rejected. This is a unique criterio
determine the delay time from the time series. Additiona
the time-delay differential equation can be constructed
analyzing the functional relationship~5!, which exactly gives
the functionhW r . Obviously, the only requirement remain
that the system dynamics fulfills the time-evolution equat
~5!, which even is true for all kinds of transient motion a
well as for the motion on chaotic or hyperchaotic attract
of arbitrary dimension. Therefore, the method permits us
analyze high-dimensional chaotic dynamics of time-retard
systems, which is not accessible to the fractal dimens
analysis. If the system possesses several coexisting attra
@7#, the method is applicable to the dynamics on every
tractor.
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56 5085RECOVERY OF THE TIME-EVOLUTION EQUATION OF . . .
We have argued above that the existence of an underl
time-delay system can be verified by proving the existenc
a 2N-dimensional hypersurfacehW r in form ~5! in the
3N-dimensional space, which is spanned by the coordin

(yW 0 ,yW t ,yẆ 0). Therefore, it is crucial to apply adequate me
sures, which enable us to identify such a hypersurface
analyzing the time series. All measures proposed so far@16–
19# rely solely on the fact that, if the trajector

„yW 0(t),yW t(t),yẆ 0(t)… is correlated via Eq.~5!, the dimension-
ality of the trajectory is reduced. To our knowledge, this w
realized for the first time by Fowler and Kember@16#, who
analyzed the dynamics of the Mackey-Glass equation. T
applied an embedding of the time series in a thr
dimensional space with two time-delayed coordinates. T
delay time of the first coordinate has been chosen to
small. The delay time of the second coordinate was take
variable. The authors of Ref.@16# stated that if the delay time
of the second coordinate equals the delay time of the ti
delay system, the trajectory lies ‘‘close to a surface’’. Fow
and Kember applied a singular value fraction to detect
decrease in dimensionality. As was correctly mentioned
them, the singular value fraction is not a good tool if t
surface is folded. The latter must be considered as the
eral case.

Recently, @17–20# we proposed a time series analys
method for scalar time-delay systems only. There,
showed that the trajectory in (y0 ,yt0

,ẏ0) space is restricted
to a two-dimensional surface. The reduction in dimens
was detected by intersecting the projected trajectory wit
surfacek(y0 ,yt ,ẏ0)50. The intersection points must be o
a curve, if the projected trajectory is correlated via Eq.~5!.
We detected such a behavior by ordering the intersec
points with respect to one coordinate and drawing a poly
line, which connects all intersection points. The length of
polygon line has been taken as a measure for the alignm
of the intersection points. This simple method correctly d
termined the delay time of scalar time-delay systems,
there is no straightforward generalization for nonscalar tim
delay systems.

For this reason, we apply another method, the basic
of which is the following: If the trajectory of an

N-dimensional time-delay system in the (yW 0 ,yW t0
,yẆ 0) space,

where t0 is assumed to be the correct value of the de
time, is correlated via Eq.~5!, the trajectory is restricted to

hypersurface. Therefore, most parts of the (yW 0 ,yW t0
,yẆ 0) space

are not visited by the trajectory. If the trajectory is viewed
any other space, for instance, if the value of the delay tim
not chosen properly, the projected trajectory is expected
visit ‘‘more’’ parts of the space. Therefore, we compute t
filling factor of the projected trajectory by covering th

(yW 0 ,yW t ,yẆ 0) space withP3N equally sized hypercubes. Th
filling factor is the number of hypercubes, which are visit
by the projected trajectory, normalized to the total numbe
hypercubes,P3N. The filling factor is computed under varia
tion of t. The existence of an underlying time-delay-induc
instability induces a local minimum in the filling factor.

Fowler and Kember@16# already suggested a fractal d
mension analysis of the projected trajectories. The fra
ng
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dimension analysis has some severe drawbacks: First, a
tal analysis requires a large number of data points, beca
for the determination of a fractal dimension it is crucial
resolve the geometrical object under investigation on diff
ent ‘‘length scales.’’ Second, the fractal analysis is comp
tationally intensive and, in practice, sensitive to addition
noise. All those measures rely on the fact that the traject
is restricted to a hypersurface, if the projected trajectory
correlated via Eq.~5!. It has been argued above that th
dimension reduction is not a sufficient criterion for the ve
fication of an underlying time-delay system. The existence
the functional relationship~5! has to be shown separately.

III. TIME SERIES ANALYSIS OF A TWO-DIMENSIONAL
TIME-DELAY SYSTEM—A NUMERICAL EXAMPLE

The applicability of the method for time series analysis
demonstrated with the help of a computer experiment.
nonscalar time-delay system is integrated numerically. D
tails of the numerical integration are reported in the Appe
dix. We will show that, although a scalar ansatz also lead
a local minimum in the filling factor, the scalar ansatz mu
be rejected, because it is not possible to find a surface, w
is given by an equation of form~5! with the help of a scalar
ansatz. In a second step, we will identify the system a
nonscalar time-delay system by verifying the existence
such a surface with the help of a nonscalar ansatz. Fina
the time-delay differential equation will be recovered fro
the time series.

We consider the two-dimensional time-delay different
equation, which has been chosen to serve its demonstrat
purpose best:

u̇52v1 f ~ut0
!,

~6!

v̇5g~u,v !,

with the initial conditions

u~ t !5ui~ t !, 2t0<t<0,

v~ t50!5v i .

The functionsf andg are given by

f ~ut0
!5

aut0

11ut0

10, ~7!

g~u,v !52
1

T
~v2u!. ~8!

Equation~6! has some similarity to the Mackey-Glass sy
tem. The dependence ofu̇ on the time-delayed valueut0

is
the same as it is the case in the Mackey-Glass system.
while the dependence ofu̇ on u induces exponential relax
ations in the Mackey-Glass system, in Eq.~6! it is similar to
a damped oscillator. There are two limits of the control p
rameter space (a,T,t0), where the dynamics of Eq.~6! is
well known. Fora→0, system~6! reduces to a damped ha
monic oscillator. ForT→0, the time scale ofv is much
faster compared to the time scale ofu. The variablev, then,
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adiabatically follows variableu, and the dynamics of Eq.~6!
resembles that of the Mackey-Glass system. Herea and t0
are chosen such that in the scalar limit (T→0) the dynamics
is high-dimensional chaotic~a53, t0520!. T is varied from
0.10 to 1.90. Note that system~6! can be transformed to
scalar integrodifferential equation for the variableu by inte-
grating the second equation with the help of the method
varying coefficients.

We present three time series ofu andv for differentT in
Fig. 1. In Fig. 1~a!, it is clearly seen how the variablev, for
T50.10, follows the variableu and the dynamics ofu re-
sembles that of a Mackey-Glass system. The values of (u,v)
are positive for all times. We mention at this point that sy
tem ~6! is invariant under the transformatio
(u,v)→(2u,2v). Therefore, there exists another attrac
with negative values of (u,v). In Figs. 1~b! and 1~c!, we
observe that the two coexisting attractors are merged. V
ablev no longer follows variableu, but it develops an inde
pendent dynamics. In these cases, the system reveals its
scalar nature.

Now, we analyze these time series with the help o
filling factor analysis. At first, we choose the scalar ansa

u̇5hr~u,ut! ~9!

for the analysis of the time seriesu(t) with an unknown
delay timet and an unknown functionhr . We analyze the
time series in a three-dimensional space, which is span
by the coordinates (u,ut ,u̇) with a variable value oft. Then,
the filling factor of the time series is determined under var
tion of t.

The results of the filling factor analysis are presented
Fig. 2 for different values ofT. The filling factor is minimal
for small values oft as a result of local correlations in time
The filling factor increases for increasingt, which is a fin-
gerprint of the chaotic nature of the motion, and eventua

FIG. 1. Time series of system~6! obtained with the help of
numerical integration~a53.00, t0520.00! for different values of
T: ~a! T50.10, ~b! T50.60, and~c! T51.90.
f

-

r

ri-

on-

a

ed

-

n

y

reaches a maximal value. Fort5t0520.00, a local mini-
mum of the filling factor is observed for all values ofT. This
decrease in the filling factor is due to the nonlocal corre
tions in time induced by the time delay. An additional loc
minimum appears att52t0 . For high enough values ofT,
though, other regularly spaced local minima in the fillin
factor appear, the period of which is equal to the oscillatio
of the underlying damped oscillator. In Fig. 2~b!, a blowup
of the t-dependent filling factor in the vicinity of the dela
time t0520.00 is shown. Clearly, the local minimum ap
pears for all values ofT considered here, but it is less pro
nounced for increasingT, because the character of the tim
delay system then becomes more and more nonscalar
emphasized above, the reduction in dimension is a neces
but not a sufficient condition for the verification of a scal
time-delay system. The existence of a surface in form~9! has
to be checked as well.

To this end, we apply an intersection of the time ser
u(t) with the planeu̇(t i)50. The values of the coordinate
ui5u(t i) and ut0

i 5ut0
(t i) are recorded. They have to b

correlated according to the scalar ansatz~9!,

hr~ui ,ut0

i !50. ~10!

Therefore, the points (ui ,ut0

i ) have to lie on a curve, if the

dynamics is governed by a scalar time-delay equation.
intersection points (ui ,ut0

i ) for t5t0520.00 and different

values ofT are shown in Fig. 3. For small values ofT, the
time seriesv(t) follows the time seriesu(t). In this case, the
dynamics of variableu is close to the dynamics of th
Mackey-Glass system. Such a behavior can be seen in
3~a!, where the intersection yields a geometrical obje
which is close to being a one-dimensional curve. The inse
Fig. 3~a! shows a blowup of the intersection points. Clear
the alignment of the intersection points is not perfect, a
result of the nonscalar nature of system~6!. Nevertheless, the
scalar ansatz~9! would be a good approximation for sma
values ofT. For higher values ofT, system~6! reveals its
nonscalar nature. Therefore, in Figs. 3~b! and 3~c!, the dis-
tribution of the intersection points becomes cloudy. Th
means, a smooth functional relationship~9! cannot be found

FIG. 2. ~a! Filling factor of the time seriesu(t) of system~6!
with a53.00, t0520.00 for different values ofT ~lower curve:
T50.10; middle curve: 0.60; upper curve: 1.90!. We used 100 000
data points for the filling factor analysis, which were taken out o
time series of 1 000 000 data points. In~b!, a blowup of the filling
factor in the vicinity of the delay timet5t0 is shown~squares:
T50.10; circles:T50.60; stars:T51.90!.
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56 5087RECOVERY OF THE TIME-EVOLUTION EQUATION OF . . .
in these cases and the scalar ansatz has to be rejected.
ertheless, in the considered example of a two-dimensio
time-delay system the filling factor analysis was succes
in the framework of a scalar ansatz, in the sense that
t-dependent filling factor showed local minima for the co
rect values of the delay time.

Now, we will analyze the time series for higher values
T with the help of a nonscalar ansatz. The general tw
dimensional ansatz is

u̇5hr ,1~u,ut ,v,vt!, ~11!

v̇5hr ,2~u,ut ,v,vt!, ~12!

with an unknown delay timet and two unknown functions
hr ,1 , and hr ,2 . The analysis has to be conducted in a s
dimensional space, in which the dynamics is restricted t
four-dimensional hypersurface. The hypersurface is given
the functionshr ,1 , andhr ,2 , which can be determined with
the help of adequate fitting procedures, for instance, a le
squares-fit in the framework of a presupposed model. In
paper, we chose a more restrictive ansatz for demonstrati
purposes,

u̇52v1 f r~ut!, ~13!

v̇52gr~u,v !. ~14!

FIG. 3. Intersection points of the time seriesu(t) for a53.00,
andt0520.00 and different values ofT: ~a! T50.10, ~b! T50.60,
and~c! T51.90. The analysis has been conducted with a time se
of 1 000 000 data points.
ev-
al
ul
e

f
-

-
a
y

st-
is
al

The delay timet and the functionsf r and gr are still un-
known, and will be determined in the following. First, we
perform a filling factor analysis in the same spirit as has be
done in the scalar case. But now the two time seri
„u(t),v(t)… have to be projected to a six-dimensional spa
which is spanned by the coordinates (u,ut ,u̇,v,vt ,v̇). The
six-dimensional space is covered with equally sized hype
cubes and the number of hypercubes which have been vis
by the trajectory is counted under variation oft.

The results are presented in Fig. 4 for different values
T, namely,T50.10, 0.60, and 1.90. The minimum in the
filling factor for t5t0520.00 is well detected for all values
of T. In Fig. 4~b!, we show a blowup of thet-dependent
filling factor in the vicinity of the delay timet0 of system
~6!. Clearly, the local minimum fort5t0 is detected for all
values ofT.

As argued above, the existence of the functional relatio
ship ~5! has to be shown, in order to verify the underlyin
time-delay-induced instability. The special form of the an
satz @Eqs. ~13! and ~14!# together with the time-evolution
equations~6! allows for a convenient way of proving the
existence of function~5!. We emphasize, though, that, in
general, it is expected to be more troublesome. We apply
intersection with the help of the conditionv(t i)50. If the
nonscalar ansatz, Eqs.~13! and~14!, is successful, the values
u̇i5u̇(t i) andut0

i 5ut0
(t i) have to be correlated via

u̇i5 f r~ut0

i !. ~15!

Plotting u̇i versusut0

i , as is shown in Fig. 5~a!, the existence

of the smooth functionf r is verified. We compare the recon-
structed functionf r ~open circles! with the functionf ~line!
of the time-delay differential equation~6!. The coincidence
is good and the (u̇i ,ut0

i ) plot can be used to recover the

function f from the time series. We emphasize that no p
rameter has been adjusted to compare the functionf with its
recoveryf r in Fig. 5~a!.

In the next step, the functional relationship betweenv̇ i

and ui is investigated. We use the same intersection con
tion v(t i)50 as above. According to the nonscalar ansa
Eqs.~13! and~14!, the coordinates of the intersection point
are correlated via

es

FIG. 4. ~a! Filling factor of the two time series„u(t),v(t)… of
system ~6! with a53.00, andt0520.00 for different values of
T(T50.10, 0.60, and 1.90; the values ofT are indicated in the
figure!. We used 100 000 data points for the filling factor analysi
which were taken out of a time series of 1 000 000 data points.
~b! a blowup of the filling factor in the vicinity of the delay time
t5t0 is shown ~squares: T50.10; circles: T50.60; stars:
T51.90!.
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v̇ i52gr~ui ,0!. ~16!

Plotting v̇ i versusui yields the functiongr(u
i ,0). We com-

pare the functionsg(ui ,0) andgr(u
i ,0) in Fig. 5~b!. Again,

the correspondence is good and the (v̇ i ,ui) plot can be used
to recover the functiongr(u

i ,0) from the time series. The
recovery of the functiongr(0,v i) is to be done in the same
spirit, and is not shown here. Obviously, the existence of t
functions f r andgr has been proven and a two-dimension
time-delay system has been identified by analyzing the ti
series.

IV. APPLICATIONS

Finally, we would like to discuss possible applications
the present method for time series analysis. We empha
that our method does not have the restrictions which a
inevitable in the embedding techniques necessary for the
termination of fractal dimensions of chaotic attractors
phase space. The analysis is not restricted to a lo
dimensional chaotic motion. Transients can be analyzed
well. The method is not sensitive to additional noise. Fu
thermore, it has been shown that the analysis can be p
formed with a comparably small number of data points@20#.
Apparently, we have a well-suited tool for the analysis
experimental time series. If the dynamics of the system to
investigated is governed by a time-delay-induced instabili
the method allows for the determination of the delay tim
and a recovery of the time-delay differential equation. The
fore, it is possible to compare time series of experimen
systems with proposed model equations in detail. Syst
parameters can be extracted from the time series analy
which might be not accessible otherwise.

We speculate that the analysis can be particularly use
in such fields as medicine and biology, where noninvas
techniques are of great importance for obvious reasons
several experiments on human subjects, which were expo
to time delays of some sort, a qualitative change of the o
served dynamics has been verified@1,6,9,26,34#, which could
be correlated to well-established pathologies. If the observ
dynamics is, indeed, induced by a time delay, as propos
we expect our analysis method to be successful. On the o

FIG. 5. Recovery of the time-delay differential equation from
the time series:~a! Comparison of the data points (u̇i ,ut0

i ), which
are shown as open circles, with the functionf ~line!. For clarity,
only 300 data points (u̇i ,ut0

i ) are shown.~b! Comparison of the data
points (v̇ i ,ui), which are shown as open circles, with the functio
g(ui ,0) ~line!. For clarity, only 40 data points (v̇ i ,ui) are shown.
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hand, we propose to check the validity of the Mackey-Gla
system by analyzing suitable time series.The analysis m
improve the understanding of the experiments, and poss
allows us to determine important system parameters
serve as a new diagnostic tool.

In a recent paper, Villermaux@29# dealt with the low-
frequency oscillations of the velocity field in the ‘‘hard tu
bulence’’ regime in a closed convection box. The author p
posed a two-dimensional time-delay system to describe
dynamics of the disturbances. Our method has the pote
to test the validity of the model by analyzing the experime
tal time series, which possibly can lead to a better und
standing of boundary instabilities.

Another important class of a prototype model for chao
dynamics are laser systems. No wonder that time-delay m
els have also been investigated in laser phys
~@3,23,24,31,33# and references therein!. It is the advantage
of laser systems with a time delay that they allow prec
measurements of time series@25,32#. We find them particu-
larly suitable for our analysis, because we expect the t
delay of laser systems to be practically discrete, compare
other experimental systems. The first steps toward the id
tification of high-dimensional chaotic dynamics of a tim
delayed laser system have been taken@20#.

V. CONCLUDING REMARKS

In conclusion, we have presented a generalization o
recently proposed method for recovering the time-evolut
equation of scalar time-delay systems by analyzing the t
series. The method is generalized in the way that it can
applied to nonscalar time-delay systems.

We have shown that anN-dimensional time-delay system
can be identified with the help ofN time series. The analysi
need not be conducted in the infinite-dimensional ph
space, instead it is sufficient to analyze the dynamics i
3N-dimensional space, in which the dynamics has to be
stricted to a 2N-dimensional hypersurface. This finding give
us a unique criterion to determine the delay time of a n
scalar time-delay system by analyzing the time series. Ad
tionally, the time-delay differential equation of dimensionN
can be recovered.

We emphasize that we only require the motion to obey
time-delay differential equation. The motion is not requir
to be located in certain parts of the phase space. If the
namical system possesses coexisting attractors, the me
can be applied to motions on every coexisting attrac
Moreover, the method is also applicable to transient motio
If the motion is on a chaotic or hyperchaotic attractor, t
applicability of the analysis method depends neither on
dimensionality nor on the number of positive Lyapunov e
ponents of the chaotic or hyperchaotic attractor. Therefo
we find that the present method might open up a door tow
a time series analysis of high-dimensional chaotic motion
time-delay systems.

We have shown the applicability of the method by an
lyzing time series which have been obtained with the help
numerically integrating a two-dimensional time-delay diffe
ential equation. The system investigated mimics a sc
time-delay system in a certain parameter range, where a
lar ansatz yields a good approximation. Under variation o
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single control parameter, the dynamics increasingly reve
the nonscalar nature of the time-evolution equation. In t
case, a scalar ansatz is not sufficient, but, nevertheless
have successfully analyzed the time series with the help
nonscalar ansatz. The delay time has been determined
the time series. Finally, we recovered the two-dimensio
time-delay differential equation by analyzing the time seri
Possible applications for the analysis of dynamical syste
in such different fields as medicine, hydrodynamics, la
physics, and chemistry are discussed.
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APPENDIX: NUMERICAL METHODS

The results presented in this paper were computed w
the help of a Runge-Kutta algorithm of the fourth order. T
fundamental time step was taken to be 0.01. The length
the memory was 2,000 time steps. In all simulations p
sented, we chose homogeneous initial values ofu(t)50.50,
v(t)50.90, and2t0<t<0.

We checked the validity of the numerical integration
system~6! by comparing the results of Runge-Kutta alg
rithms of different orders, under variation of the time step
the integration, in order to check the validity of the resul
Additionally, the computed time series were compared
analytical solutions, which are available in certain parame
ranges.

For the filling factor analysis, we used time series w
1 000 000 data points. The time derivatives were estima
by applying a local parabolic approximation. To compute t
t-dependent filling factor, every tenth point of the time ser
was taken. Therefore, we conducted the filling factor analy
by analyzing 100 000 data points in three- or six-dimensio
space, respectively.
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